
16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 1

PROLOG PL

� Prolog: is language derived from (Programming in Logic), it

one of the most widely used programming languages in

artificial intelligence research:

� Programming languages are two kinds:

1. Procedural Programming : in which we tell the computer

how to solve a problem, such as BASIC, C++, Java, Pascal)

2. Declarative Programming: in which we tell the computer

what problem we want solved, such as(LISP, Prolog, ML)

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 2

PROLOG PL

Basic Elements of Prolog

� There are only three basic constructs in Prolog: Fact, Rule and

Queries.

� A collection of facts and rules is called a knowledge base(or a

database) and Prolog Programming is all about writing

knowledge bases.

� That is, Prolog programs simply are knowledge bases,

collections of facts and rules which describe some collection of

relationships that we find interesting.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 3

PROLOG PL

� Facts: are statements that describe object properties or

relations between objects. ”Some are always true”

e.g. father(jane,alan).

= Can be read as “Jane is the father of Alan.”

� Rules: rule enable to derive a new property or relation from a

set of existing ones.”Some are dependent on others being true”

e.g. parent(X,Y) :- father(X,Y).

= “Person X is the parent of person Y if X is Y’s father.”

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 4

PROLOG PL

� Queries or Questions: is a request to prove or retrieve

information from the database.

-Example: “ who is Jim’s father”??-father(who,Jim)

� Both facts and rules are predicate definitions.

� ‘Predicate’ is the name given to the word occurring before the

bracket in a fact or rule:

father (jane,alan).

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 5

Predicate name

PROLOG PL

Clauses

� Predicate definitions consist of clauses.

= An individual definition (whether it be a fact or rule).

e.g. mother(jane,alan). = Fact

parent(P1,P2):- mother(P1,P2). = Rule

� A clause consists of a head and sometimes a body.

Facts don’t have a body because they are always true.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 6

head body

PROLOG PL
Arguments:

� A predicate head consists of a predicate name and sometimes
some arguments contained within brackets and separated by
commas.

mother(jane,alan).

� A body can be made up of any number of subgoals (calls to other
predicates) and terms.

� Arguments also consist of terms, which can be:

• Constants e.g. jane,

• Variables e.g. Person1, or

• Compound terms.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 7

Predicate name Arguments

PROLOG PL Terms: Constants

Constants can either be:

� Numbers:

� integers are the usual form (e.g. 1, 0, -1, etc), but

� floating-point numbers can also be used (e.g. 3.0E7)

� Symbolic (non-numeric) constants:

� always start with a lower case alphabetic character and contain any

mixture of letters, digits, and underscores (but no spaces,

punctuation, or an initial capital).

� e.g. abc, big_long_constant, x4_3t).

� String constants:

� are anything between single quotes e.g. ‘Like this’.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 8

PROLOG PL Terms: Variables

� Variables: always start with an upper case alphabetic character or

an underscore.

� Other than the first character they can be made up of any mixture

of letters, digits, and underscores.

e.g. X, ABC, _89two5, _very_long_variable

� There are no “types” for variables (or constants) – a variable can

take any value.

� All Prolog variables have a “local” scope:

� they only keep the same value within a clause; the same variable used

outside of a clause does not inherit the value (this would be a “global”

scope).

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 9

PROLOG PL Terms: Compound Terms

Compound Terms

� The structured data objects of the language are the compound

terms.

� A compound term comprises a functor (called the principal

functor of the term) and a sequence of one or more terms called

arguments. A functor is characterized by its name, which is an

atom, and its arity or number of arguments.

� For example the compound term whose functor is named point

of arity 3, with arguments X, Y and Z, is written: point(X, Y, Z)

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 10

PROLOG PL : Data type.

Data type:

Prolog supports the following data type to define program entries.

1. Integer: to define numerical value like 1, 20, 0,-3,-50, ect.

2. Real: to define the decimal value like 2.4, 3.0, 5,-2.67, ect.

3. Char: to define single character, the character can be of type

small letter or capital letter or even of type integer under one

condition it must be surrounded by single quota. For example,

‘a’,’C’,’123’.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 11

PROLOG PL : Data type.

4. string : to define a sequence of character like “good” i.e define

word or statement entries the string must be surrounded by double

quota for example “computer”, “134”, “a”. The string can be of any

length and type.

5. Symbol: another type of data type to define single character or

sequence of character but it must begin with small letter and don’t

surround with single quota or double quota.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 12

PROLOG PL : Program Structure

Program structure: Prolog program structure consists of five

segments, not all of them must appear in each program. The

following segment must be included in each program predicates,

clauses, and goal.

1. Domains: define global parameter used in the program.

Domains

I= integer

C= char

S = string

R = real

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 13

PROLOG PL : Program Structure

2. Data base: define internal data base generated by the program

Database

Greater (integer)

3. Predicates: define rule and fact used in the program.

Predicates

Mark(symbol,integer).

4. Clauses: define the body of the program.. For the above

predicates the clauses portion may contain Mark (a, 20).

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 14

PROLOG PL : Program Structure

5. Goal: can be internal or external, internal goal written after

clauses portion , external goal supported by the prolog compiler

if the program syntax is correct

� This portion contains the rule that drive the program

execution.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 15

PROLOG PL: Mathematical and logical operation

A .mathematical operation:

B .logical operation:

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 16

PROLOG PL: Other mathematical function

� Other mathematical function

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 17

PROLOG PL: Read and Write function

Read and Write function

1. Read function:

Readint(Var) : read integer variable.

Readchar(Var) : read character variable.

Readreal(Var) : read (decimal) variable.

Readln(Var) : read string.

2. Write function

Write(Var) : write variable of any type.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 18

PROLOG PL: Read and write function

Example : Write prolog program to read integer value and print it.

Domains

I = integer

Predicates

print.

Clauses

Print:- write (“please read integer number”), readint(X),

write(“you read”,X).

Goal

Print.

Output:

Please read integer number 4

You read 4

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 19

PROLOG PL: Pattern Matching

� Prolog uses unification to match variables to values. An
expression tat contains variables like X+Y*Z describes a pattern
where there are three blank spaces to fill in named X, Y, and Z.

� The expression 1+2*3 as the same structure (pattern) but no
variables. If we input this query X+Y*Z=1+2*3.

� Then prolog will respond that X=1, Y=2, and Z=3. the pattern
matching is very powerful because you can match variables to
expression like this X+Y=1+2*3, and get X+1 and Y=2*3.

� You can match variable to variable: X+1+Y=Y+Z+2. This sets
X=Y=2 and Z=1.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 20

PROLOG PL: Cut and Fail function

1. Cut

Represented as “!” is a built in function always True , used to stop

backtracking and can be placed any where in the rule, we list the

cases

where “!” can be inserted in the rule:

1 .R:-f1, f2,!. “f1, f2 will be deterministic to one solution.

2. R:-f1,!,f2. “ f1 will be deterministic to one solution while f2 to all .

3. R:- !,f1,f2. “R will be deterministic to one solution.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 21

PROLOG PL: Cut and Fail function

Example1 : program without use cut.

Domains

I= integer

Predicates

No(I)

Clauses

No (5).

No (7).

No (10).

Goal

No (X).

Output:

X=5

X=7

X=10

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 22

Example 2: program using cut.

Domains

I= integer

Predicates

No(I)

Clauses

No (5):-!.

No (7).

No (10).

Goal

No (X).

Output:

X=5.

PROLOG PL: Cut and Fail function

Example 3: using cut in the end of the rule.

Domains

I =integer

S = symbol

Predicates

a(I)

b (s)

c (I, s)

Clauses

a(10).

a(20)

b(a)

b(c)

c (X, Y):- a (X), b (Y),!.

Goal

c(X,Y).

Output:

X= 10 Y=a

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 23

Example 5: using cut in the middle of the
rule.

Domains

I =integer

S = symbol

Predicates

a(I)

b (s)

c (I, s)

Clauses

a(10).

a(20)

b(a)

b(c)

c (X, Y):- a (X),!, b (Y).

Goal

c(X,Y).

Output:

X= 10 Y=a

Y=c

PROLOG PL: Cut and fail function

2- fail: the fail predicate is provided by prolog. When it is called, it

causes the failure of the rule. And this will be forever, nothing can

change the statement of this predicate.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 24

PROLOG PL: Recursion

� In addition to have rules that use other rules as part of their

requirements, we can have rules that use themselves as part of

their requirements.

� This kind of rule called “recursive “because the relation ship in

the conclusion appears again in the body of the rule, where the

requirements are specified.

� A recursive rule is a way of generating a chain of relationship for

a recursive rule to be effective. However, there must be some

place in the chain of relationship where the recursion stops.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 25

PROLOG PL: Recursion

1. Tail Recursion

� We place the predicate that

cause the recursion in the tail

of the rule as shown below:

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 26

PROLOG PL: Recursion

Example: Program to find factorial.

5! = 5*4*3*2*1

Predicates

Fact (integer, integer, integer)

Clauses

Fact(1, F, F):-!.

Fact(N,F,R):- F1=F*N , N1=N-1, fact(N1,F1,R).

Goal

Fact (5,1,F).

Output:

F = 120

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 27

PROLOG PL: Recursion

2. Non –Tail Recursion (Stack Recursion)

� This type of recursion us the stack to hold the value of the

variables till the recursion is complete. The statement is self –

repeated as many times as the number of items in the stack..

Below a simple comparison between tail and non-tail recursion.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 28

PROLOG PL: Recursion

Example: factorial program using non-tail recursion.

Predicates

fact(integer, integer).

Clauses

fact(1,1).

fact(N,F):- N>1,N1=N-1,fact(N1,F1),F=N*F1.

Goal

Fact (4,Y)

Output:

Y =24.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 29

PROLOG PL: List

1. List in prolog:

� In prolog, a list is an object that contains an arbitrary number of
other objects within it.

� Lists correspond roughly to array in other languages but unlike
array, a list dose not require you to how big it will be before use it.

2. syntax of list

� List always defined in the domains section of the program as
follow:

Domains

list = integer*

• ‘*’ refer to list object which can be of length zero or un defined.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 30

PROLOG PL: List

• The type of element list can be of any standard defined data type

like integer, char … ect

• List element surrounded with square brackets and separated by

comma as follow: l = [1, 2, 3, 4].

• List consist of two parts head and tail , the head represent the

first element in the list and the tail represent the remainder (i.e

head is an element but tail is a list) . for the following list :

L = [1,2,3]

H = 1 T =[2,3]

H =2 T =[3]

H =3 T=[]

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 31

PROLOG PL: List

• [] refer to empty list.

• List can be written as [H|T] in the program, if the list is non

empty then this statement decompose the list into Head and tail

otherwise (if the list is empty) this statement add element to the

list.

3. List and Recursion

� As maintained previous list consist of many element, therefore to

manipulate each element in the list we need recursive call to the

list until it become empty.

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 32

PROLOG PL: List

Example: program to print list element in one line.

Domains

L = integer*

Predicates

Print (L)

Clauses

Print ([]):-!.

Print ([H|T]):- write (H) , print (T).

Goal

Print ([1,4,6,8]).

Output:

1468

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 33

PROLOG PL: List

Example: program to find sum of integer list.

Domains

I= integer

L=i*

Predicates

Sum (L I, I)

Clauses

Sum ([],S,S):-!.

Sum([H| T],S1,S):- S2 = S1+H , Sum (T,S2,S).

Goal

Sum ([1,4,6,9],0 ,S).

Output

S = 20

16الأول، تشرين 22 Lecture 1: Introduction to Prolog PL 34

16الأول، تشرين 22 Lecture 1: Introduction AI 1

Introduction: Intelligence

What is intelligence?

� "Intelligence denotes the ability of an individual to adapt his

thinking to new demands; it is the common mental adaptability

to new tasks and conditions of life" (William Stern, 1912)

� Being "intelligent" means to be able to cognitively grasp

phenomena, being able to judge, to trade of between different

possibilities, or to be able to learn.

16الأول، تشرين 22 Lecture 1: Introduction AI 2

Introduction: Intelligence

� An important aspect of "Intelligence" is the way and efficiency

how humans are able to adapt to their environment or assimilate

their environment for solving problems.

� Intelligence manifests itself in logical thinking, computations, the

memory capabilities of the brain, through the application of

words and language rules or through the recognition of things

and events.

16الأول، تشرين 22 Lecture 1: Introduction AI 3

Introduction: Intelligence

� The combination of information, creativity, and new problem

solutions is crucial for acting "intelligent".

� Intelligence: - “the capacity to learn and solve problems”

- in particular,

o the ability to solve novel problems

o the ability to act rationally

o the ability to act like humans

16الأول، تشرين 22 Lecture 1: Introduction AI 4

Introduction: Intelligence System

What is Intelligent Systems?

� Any formal or informal system to manage data gathering, to

obtain and process the data, to interpret the data, and to provide

reasoned judgments to decision makers as a basis for action.

� The term is not limited to intelligence organizations or services

but includes any system, in all its parts, that accomplishes the

listed tasks.

16الأول، تشرين 22 Lecture 1: Introduction AI 5

Introduction: Intelligence System

� The benefits of intelligent systems are:

1. Enhanced problem-solving.

2. Improved decision quality.

3. Ability to solve complex problems.

4. Consistent decisions.

� The major difficulty is developing theses system is extracting

the expertise needed to develop the knowledge base. It is

difficult to extract an expert’s knowledge and codify it into a

format that can be used in an automated application.

16الأول، تشرين 22 Lecture 1: Introduction AI 6

Introduction: Intelligence Agents

� Agents: Software that gathers information about an environment

and takes actions based on that.

� An agent is anything that can be viewed as perceiving its

environment through sensors and acting upon that environment

through effectors. Figure 1.1 Agents interact with environment

through sensors and effectors

16الأول، تشرين 22 Lecture 1: Introduction AI 7

Introduction: Intelligence Agents

� There are different types of agent:

1. Human Agent: A human agent has eyes, ears, and other organs for

sensors, and hands, legs, mouth, and other body parts for effectors.

2. Robotic Agents: A robotic agent has cameras and infrared range

finders for the sensors and various motors for the effectors.

3. Software Agent: A software agent has encoded bit strings as its

percepts and actions.

4. Generic agent: A general structure of an agent who interacts with

the environment

16الأول، تشرين 22 Lecture 1: Introduction AI 8

Introduction: Intelligence Agents

� The agent function for an agent specification the action taken by

the agent in response to any percept sequence. Internally, the agent

function for an artificial agent will be implemented ba an agent

program.

� An agent program is a function that implements the agent

mapping from percepts to actions. it is a concrete implementation,

running on the agent architecture.

16الأول، تشرين 22 Lecture 1: Introduction AI 9

Introduction: Intelligence Agents

Structure of Agents:

� An intelligent agent is a combination of Agent Program and

Architecture.

Intelligent Agent= Agent Program + Architecture

� Agent Program: is a function that implements the agent mapping from

percepts to action. The design of the agent program depends on the

nature of the environment.

� Architecture: is a computing device used to run the agent program.

16الأول، تشرين 22 Lecture 1: Introduction AI 10

Introduction: Artificial Intelligence (AI)

What is AI?

� It is often difficult to construct a definition of a discipline that is

satisfying to all of its practitioners. AI research encompasses a

spectrum of related topics.

� Broadly, AI is the computer-based exploration of methods for

solving challenging tasks that have traditionally depended on

people for solution. Such tasks include complex logical inference,

diagnosis, visual recognition, comprehension of natural language,

game playing, explanation, and planning.

� There are many definitions of AI:

16الأول، تشرين 22 Lecture 1: Introduction AI 11

Introduction: Artificial Intelligence (AI)

� Artificial intelligence is the branch of computer science concerned

with making computers behave like humans.

� AI is a branch of the field of computer and information science. It

focuses on developing hardware and software system that solve

problems and accomplish tasks if accomplished by humans would

be considered a display of intelligence. The field of AI includes

studying and developing machines such as robots, Automatic pilots

foe airplane and space ships, and “smart” military weapons.

16الأول، تشرين 22 Lecture 1: Introduction AI 12

Introduction: Artificial Intelligence (AI)

� AI is the field as “ the study and design of intelligence agents”,

where an intelligent agent is a system that perceive its environment

and takes actions that maximize its chances of success.

� John McCarthy, who coined the term in 1956, defines AI ass “the

science and engineering of making intelligence machines.

� AI is the intelligence of machines and branch of computer science

that aim to create it.

� AI is the study of how to make computers do thinks which, at the

moment, people do better.

16الأول، تشرين 22 Lecture 1: Introduction AI 13

Introduction: Artificial Intelligence (AI)

� As the result, AI is concerned with developing computer system

that can store knowledge and effectively use the knowledge to help

solve problems and accomplish tasks.

� The above definitions give us four possible goals to pursue in

artificial intelligence:

- Systems that think like humans

- Systems that act like humans

- Systems that think rationally.

- Systems that act rationally

16الأول، تشرين 22 Lecture 1: Introduction AI 14

Introduction: Artificial Intelligence (AI)

1. Acting Humanly: Turing Test approach

� The Turing Test, proposed by Alan Turing (Turing, 1950), was

designed to provide a satisfactory operational definition of

intelligence.

� He considered the question, “Can machine think?” Rather than

define the terms “machine or “think”. Turing proposed the test that

begins with to people and the machine to be evaluated. One person

plays the role of the interrogator, who is in a separate room from

the computer and the other person (Fig. 1.2).

16الأول، تشرين 22 Lecture 1: Introduction AI 15

Introduction: Artificial Intelligence (AI)

Figure 1.2: The Turing Test

16الأول، تشرين 22 Lecture 1: Introduction AI 16

Introduction: Artificial Intelligence (AI)

� The interrogator can ask questions of either the person or the

computer by typing questions and receiving typed responses.

However, the interrogator knows them only as A and B and aim to

determine which the person is and which are the machine.

� The goal of the machine is to fool the interrogator into believing

that is the person.

� If the machine succeeds at this, then we will conclude that the

machine is acting humanly.

16الأول، تشرين 22 Lecture 1: Introduction AI 17

Introduction: Artificial Intelligence (AI)

� Programming a computer to pass the test provides plenty to work

on. The computer would need to possess the following capabilities:

1. Natural language processing: to enable it to communicate

successfully in English (or some other human language);

2. Knowledge representation: to store information provided before

or during the interrogation;

3. Automated reasoning: to use the stored information to answer

questions and to draw new conclusions;

4. Machine learning: to adapt to new circumstances and to detect

and extrapolate patterns.

16الأول، تشرين 22 Lecture 1: Introduction AI 18

Introduction: Artificial Intelligence (AI)

� Total Turing Test includes a video signal so that the interrogator

can test the subject's perceptual abilities, as well as the opportunity

for the interrogator to pass physical objects ``through the hatch.'' To

pass the total Turing Test, the computer will need:

� Computer vision to perceive objects, and

� Robotics to move them about.

16الأول، تشرين 22 Lecture 1: Introduction AI 19

Introduction: Artificial Intelligence (AI)

2. Thinking Humanly: The Cognitive modeling approach

� To construct a machine program to think like a human, first it

requires the knowledge about the actual workings of human mind.

� After completing the study about human mind it is possible to

express the theory as a computer program. It the program’s

input/output and timing behavior matching with the human

behavior then we can say that the program’s mechanism is working

like a human mind.

� Example: General Problem Solver(GPS)

16الأول، تشرين 22 Lecture 1: Introduction AI 20

Introduction: Artificial Intelligence (AI)

3. Thinking rationally: The laws of thought approach

� The right thinking introduced the concept of logic.

� Example: - Rami is a student of III year CS.

- All students are good in III year in CS.

- Rami is a good student.

16الأول، تشرين 22 Lecture 1: Introduction AI 21

Introduction: Artificial Intelligence (AI)

3. Acting rationally: The rational agent approach

� Acting rationally means, to achieve one’s goal given one’s beliefs.

� In the previous topic laws of thought approach, correct inference is

selected, conclusion is derived, but the agent acts on the conclusion

defined the task of acting rationally.

� The study of rational agent has Tow advantages:

1. Correct inference is selected and applied.

2. It concentrates on scientific development rather than other

methods

16الأول، تشرين 22 Lecture 1: Introduction AI 22

16الأول، تشرين 22 Lecture 1: Introduction AI 1

Introduction: Applications Of AI

1. Problem Solving:-

� This is the first application area of AI research., the objective of

this particular area of research is how to implement the

procedures on AI systems to solve the problems like Human

Beings.

2. Game Playing:-

� Much of early research in state space search was done using

common board games such as checkers, chess and 8 puzzle.

Most games are played using a well defined set of rules.

16الأول، تشرين 22 Lecture 1: Introduction AI 2

Introduction: Applications Of AI

� This makes it easy to generate the search space and frees the

researcher from many of the ambiguities and complexities

inherent in less structured problems. The board Configurations

used in playing these games are easily represented in computer,

requiring none of complex formalisms.

� For solving large and complex AI problems it requires lots of

techniques like Heuristics. We commonly used the term

intelligence seems to reside in the heuristics used by Human

beings to solve the problems.

16الأول، تشرين 22 Lecture 1: Introduction AI 3

Introduction: Applications Of AI

3. Natural Language understanding:-

� The main goal of this problem is we can ask the question to the

computer in our mother tongue the computer can receive that

particular language and the system gave the response with in the

same language. The effective use of a Computer has involved the

use of a Programming Language that use a set of Commands that

we must use to Communicate with the Computer. The goal of

natural language processing is to enable people and language

such as English, rather than in a computer language.

16الأول، تشرين 22 Lecture 1: Introduction AI 4

Introduction: Applications Of AI

It can be divided in to Two sub fields.

A. Natural Language Understanding : Which investigates

methods of allowing the Computer to improve instructions given in

ordinary English so that Computers can understand people more

easily.

B. Natural Language Generation : This aims to have Computers

produce ordinary English language so that people an understand

Computers more easily.

16الأول، تشرين 22 Lecture 1: Introduction AI 5

Introduction: Applications Of AI

4. Perception:-

� The process of perception is usually involves that the set of

operations i.e. Touching , Smelling Listening , Tasting , and

Eating. These Perceptual activities incorporation into Intelligent

Computer System is concerned with the areas of Natural

language Understanding, Processing and Computer Vision

mainly.

� The are two major Challenges in the application area of

Perception.

16الأول، تشرين 22 Lecture 1: Introduction AI 6

Introduction: Applications Of AI

A. Speech Reorganization:-

� The main goal of this problem is how the Computer System can

recognize our Speeches. (Next process is to understand those

Speeches and process them i.e. Encoding & Decoding i.e

producing the result in the same language.) Its one is very

difficult; Speech Reorganization can be described in two ways.

16الأول، تشرين 22 Lecture 1: Introduction AI 7

Introduction: Applications Of AI

1. Discrete Speech Reorganization

Means People can interact with the Computer in their mother

tongue. In such interaction whether they can insert time gap in

between the two words or two sentences (In this type of Speech

Reorganization the computer takes some time for searching the

database).

16الأول، تشرين 22 Lecture 1: Introduction AI 8

Introduction: Applications Of AI

2. Continues Speech Reorganization

� Means when we interact with the computer in our mother tongue

we can not insert the time gap in between the two words or

sentences , i.e. we can talk continuously with the Computer (For

this purpose we can increase speed of the computer).

16الأول، تشرين 22 Lecture 1: Introduction AI 9

Introduction: Applications Of AI

B. Pattern Reorganization:-

� This the computer can identify the real world objects with the help

of “Camera”. Its one is also very difficult , because

� To identify the regular shape objects, we can see that object from

any angle; we can imagine the actual shape of the object (means to

pictures which part is light fallen) through this we can identify the

total structure of that particular object.

16الأول، تشرين 22 Lecture 1: Introduction AI 10

Introduction: Applications Of AI

� To identify the irregular shape things, we can see that particular

thing from any angle; through this we cannot imagine the actual

structure. With help of that we can attach the Camera to the

computer and pictures certain part of the light fallen image with

the help of that whether the AI system can recognize the actual

structure of the image or not? It is some what difficult compare to

the regular shape things, till now the research is going on. This is

related the application area of Computer Vision.

16الأول، تشرين 22 Lecture 1: Introduction AI 11

Introduction: Applications Of AI

5. Image Processing:-

� Where as in pattern reorganization we can catch the image of real

world things with the help of Camera. The goal of Image

Processing is to identify the relations between the parts of image.

� It is a simple task to attach a Camera to a computer so that the

computer can receive visual images. People generally use Vision

as their primary means of sensing their environment.

16الأول، تشرين 22 Lecture 1: Introduction AI 12

Introduction: Applications Of AI

� We generally see more than we here. i.e. how can we provide such

perceptual facilities touch, smell, taste, listen, and eat to the AI

System.

� The goal of Computer Vision research is to give computers this

powerful facility for understanding their surroundings. Currently,

one of the primary uses of Computer Vision is in the area of

Robotics.

16الأول، تشرين 22 Lecture 1: Introduction AI 13

Introduction: Applications Of AI

6. Expert system:-

� Expert means the person who had complete knowledge in

particular field, i.e is called as an expert. The main aim of this

problem is with the help of experts, to load their tricks on to the

compute and make available those tricks to the other users. The

expert can solve the problems with in the time.

� The goal of this problem is how to load the tricks and ideas of an

expert on to the computer, till now the research will be going on.

16الأول، تشرين 22 Lecture 1: Introduction AI 14

Introduction: Applications Of AI

7. Computer Vision:-

� It is a simple task to attach a camera to a computer so that the

computer can receive visual images. People generally use vision as

their primary means of sensing their environment. We generally see

more than we here, feel, smell, or taste.

� The goal of computer vision research is to give computers this

powerful facility for understanding their surroundings. Currently,

one of the primary uses of computer vision is in the area of

Robotics.

16الأول، تشرين 22 Lecture 1: Introduction AI 15

Introduction: Applications Of AI

8. Robotics:-

� A robot is an electro – mechanical device that can be programmed to

perfume manual tasks. The robotics industries association formally

defines to move a Robot as a “ Programmable multi-functional

manipulator designed to move material, parts, tools, or specialized

devices through variable programmed motions for the performance

of variety of tasks”.

16الأول، تشرين 22 Lecture 1: Introduction AI 16

Introduction: Applications Of AI

� Not all robotics is considered to be part of AI. A Robot that

perform sonly the actions that it is has been pre-programmed to

perform is considered to be a “dumb” robot, includes some kind of

sensory apparatus, such as a camera , that allows it to respond to

changes in its environment , rather than just to follow instructions

“mindlessly”.

16الأول، تشرين 22 Lecture 1: Introduction AI 17

Introduction: Applications Of AI

9. Intelligent Computer – Assisted Instruction:-

� Computer - Assisted Instruction (CAI) has been used in bringing

the power of the computer to bear on the educational process.

Now AI methods are being applied to the development of

intelligent computerized “ Tutors” that shape their teaching

techniques to fit the leaning patterns of individual students.

16الأول، تشرين 22 Lecture 1: Introduction AI 18

Introduction: Applications Of AI

10. Heuristic Classification:-

� The term Heuristic means to Find & Discover., find the problem

and discover the solution. For solving complex AI problems it’s

requires lots of knowledge and some represented mechanisms in

form of Heuristic Search Techniques., i.e referred to known as

Heuristic Classification.

16الأول، تشرين 22 Lecture 1: Introduction AI 19

Introduction: Applications Of AI

11. Neural Network:-

� An Artificial Neural Network (ANN) is an information processing

paradigm that is inspired by the way biological nervous systems,

such as the brain, process information. The key element of this

paradigm is the novel structure of the information processing

system. It is composed of a large number of highly interconnected

processing elements (neurons) working in unison to solve specific

problems. ANNs, like people, learn by example.

16الأول، تشرين 22 Lecture 1: Introduction AI 20

Introduction: Applications Of AI

� An ANN is configured for a specific application, such as pattern

recognition or data classification, through a learning process.

Learning in biological systems involves adjustments to the

synaptic connections that exist between the neurons. This is true

of ANNs as well.

16الأول، تشرين 22 Lecture 1: Introduction AI 21

Introduction: Search Algorithms

What is problem reduction meaning?

� Problem Reduction means that there is a hard problem may be

one that can be reduced to a number of simple problems. Once

each of the simple problems is solved, then the hard problem

has been solved.

Search Algorithms:

� To successfully design and implement search algorithms, a

programmer must be able to analyze and predict their behavior.

16الأول، تشرين 22 Lecture 1: Introduction AI 22

Introduction: Search Algorithms

Many questions needed to be answered by the algorithm these include:

� Is the problem solver guaranteed to find a solution?

� Will the problem solver always terminate , or can it become caught in an

infinite loop?

� When a solution is found, is it guaranteed to be optimal?

� What is the complexity of the search process in terms of time usage?

Space search?

� How can the interpreter be designed to most effectively utilize a

representation language?

16الأول، تشرين 22 Lecture 1: Introduction AI 23

Introduction: Search Algorithms

State Space Search:-

� The theory of state space search is our primary tool for answering

these questions, by representing a problem as state space graph, we

can use graph theory to analyze the structure and complexity of both

the problem and procedures used to solve it.

Graph Theory:-

� A graph consists of a set of a nodes and a set of arcs or links

connecting pairs of nodes. The domain of state space search, the

nodes are interpreted to be stated in problem solving process, and the

arcs are taken to be transitions between states.
16الأول، تشرين 22 Lecture 1: Introduction AI 24

Introduction: Search Algorithms

Graph theory is our best tool for reasoning about the structure of

objects and relations:

Nodes={a,b,c,d,e}

Arcs={(a,b), (a,d),(b,c),(c,b),(d,e),(e,c),(e,d)}

16الأول، تشرين 22 Lecture 1: Introduction AI 25

Introduction: Search Algorithms

Nodes=={a,b,c,d,e,f,g,h,i}

Arcs={(a,b),(a,c),(a,d),(b,e),(b,f),(c,f),(c,g),(c,h),(c,i),(d,j)}

16الأول، تشرين 22 Lecture 1: Introduction AI 26

Introduction: Search Algorithms

State Space Representation of Problems:-

A state space: is represented by four items [N,A,S,G], where:-

� N is a set of nodes or states of the graph. These correspond to the

states in a problem –solving process.

� A is the set of arcs between the nodes. These correspond to the

steps in a problem –solving process.

� S a nonempty subset of N , contains the start state of the problem.

� G a nonempty subset of N contains the goal state of the problem.

16الأول، تشرين 22 Lecture 1: Introduction AI 27

Introduction: Search Algorithms

A solution path:- Is a path through this graph from a node S to a

node in G.

Example:- Traveling Salesman Problem

� Starting at A , find the shortest path through all the cities , visiting

each city exactly once returning to A.

16الأول، تشرين 22 Lecture 1: Introduction AI 28

Introduction: Search Algorithms

� “An instance of traveling Salesman Problem”

16الأول، تشرين 22 Lecture 1: Introduction AI 29

Introduction: Search Algorithms

� The complexity of exhaustive search in the traveling Salesman

is (N-1)!, where N is the No. of cities in the graph. There are

several technique that reduce the search complexity.

1. Branch and Bound Algorithm:-Generate one path at a time,

keeping track of the best circuit so far. Use the best circuit so far

as a bound of future branches of the search. Figure below

illustrate branch and bound algorithm.

16الأول، تشرين 22 Lecture 1: Introduction AI 30

Introduction: Search Algorithms

16الأول، تشرين 22 Lecture 1: Introduction AI 31

Introduction: Search Algorithms

2. Nearest Neighbor Heuristic: At each stage of the circuit, go to

the nearest unvisited city. This strategy reduces the complexity to

N, so it highly efficient, but it is not guaranteed to find the

shortest path, as the following example:

16الأول، تشرين 22 Lecture 1: Introduction AI 32

� Cost of Nearest neighbor path

is a e d b c a=550

� Is not the shortest path , the

comparatively high cost of arc

(C,A) defeated the heuristic.

16الأول، تشرين 22 Lecture 4: Search Algorithms 1

Introduction: Search Algorithms

� In general the Search Techniques or Algorithms are classified

into Uniformed Search or Blind Search and Informed

Search or Heuristic Search.

16الأول، تشرين 22 Lecture 4: Search Algorithms 2

Informed SearchUniformed Search

The path cost from the current state

is calculated, to select the minimum

path cost as the next state

No information about the number of

steps or path cost from the current state

to goal state

More effectiveLess effective in search method

Additional information can be added

as assumption to solve the problem

Problem to be solved with the given

information

Hill Climbing, Best First Search,

A* Search

Depth First Search, Breadth First Search

Uniformed Search

1. Uninformed Search (Blind Search)

� In this search, we generate a potential solution and then check

it against the solution. If we’ve found the solution, we’re done,

otherwise, we repeat by trying another potential solution. This

is called “Generate and Test” because we generate a potential

solution, and then test it. Without a proper solution, we try

again.

16الأول، تشرين 22 Lecture 4: Search Algorithms 3

Uniformed Search

Procedure Generate & Test Algorithm

Begin

Repeat

Generate a new state and call it current-state;

Until current-state = Goal;

End.

� This type of search takes all nodes of tree in specific order until

it reaches to goal. The order can be in breath and the strategy

will be called breadth – first – search, or in depth and the

strategy will be called depth first search.

16الأول، تشرين 22 Lecture 4: Search Algorithms 4

Uniformed Search

A-Breadth – First – Search

� In breadth –first search, when a state is examined, all of its

siblings are examined before any of its children. The space is

searched level-by-level, proceeding all the way across one level

before doing down to the next level.

16الأول، تشرين 22 Lecture 4: Search Algorithms 5

Uniformed Search
Breadth – first – search Algorithm

Begin

Open: = [start]; Closed: = [];

While open ≠ [] do

Begin

Remove left most state from open, call it x;

If x is a goal the return (success)

Else Begin

Generate children of x;

Put x on closed;

Eliminate children of x on open or closed;

Put remaining children on right end of open

End

End

Return (failure)

End.

16الأول، تشرين 22 Lecture 4: Search Algorithms 6

Uniformed Search
� Example: Assume M is the Goal State

16الأول، تشرين 22 Lecture 4: Search Algorithms 7

Uniformed Search

ClosedOpenCurrent StateIteration

[][A]A1

[A][B, C, D]B2

[B,A][C, D, E,F]C3

[C,B,A][D, E, F, G, H]D4

[D,C,B,A][E, F, G, H, I, J]E5

[E,D,C,B,A][F,G,H, I, J, K, L]F6

[F,E,D,C,B,A][G,H, I, J, K, L, M]G7

[G,F,E,D,C,B,A][H, I, J, K, L, M, N]H8

[H,G,F,E,D,C,B,A][I, J, K, L, M, N,O,P]I9

[I,H,G,F,E,D,C,B,A][J, K, L, M, N,O,P,Q]J10

[J,I,H,G,F,E,D,C,B,A][K, L, M, N,O,P,Q, R]K11

[K,J,I,H,G,F,E,D,C,B,A][L, M, N,O,P,Q, R, S]L12

[L,K,J,I,H,G,F,E,D,C,B,A][M, N,O,P,Q, R, S,T]M13

16الأول، تشرين 22 Lecture 4: Search Algorithms 8

Uniformed Search

16الأول، تشرين 22 Lecture 4: Search Algorithms 9

Advantages:-

� Guaranteed to find the single solution at the shallowest depth

level.

Disadvantages:-

� The memory requirements are a bigger problem for BFS than is

the execution time.

� Exponential-complexity search problems cannot be solved by

uniformed methods for any but only suitable for smallest

instances problem (i.e) (number of levels to be minimum (or)

branching factor to be minimum).

Uniformed Search

16الأول، تشرين 22 Lecture 4: Search Algorithms 10

B- Depth – first – search

In depth – first – search, when a state is examined, all of its

children and their descendants are examined before any of its

siblings. Depth – first search goes deeper in to the search space

whenever this is possible only when no further descendants of a

state cam found owe its.

Uniformed Search

16الأول، تشرين 22 Lecture 4: Search Algorithms 11

Depth – first – search Algorithm

Begin

Open: = [start]; Closed: = [];

While open ≠ [] do

Remove leftmost state from open, call it x;

If x is a goal then return (success)

Else begin

Generate children of x;

Put x on closed;

Eliminate children of x on open or closed; put remaining children on left end

of open end

End;

Return (failure)

End.

Uniformed Search
� Example: Assume M is the Goal State

16الأول، تشرين 22 Lecture 4: Search Algorithms 12

Uniformed Search

ClosedOpenCurrent StateIteration

[][A]A1

[A][B,C,D]B2

[B,A][E,F,C,D]E3

[E,B,A][K,L,F,C,D]K4

[K,E,B,A][S,L,F,C,D]S5

[S,K,E,B,A][L,F,C,D]L6

[L,S,K,E,B,A][T,F,C,D]T7

[T,L,S,K,E,B,A][F,C,D]F8

[F,T,L,S,K,E,B,A][M,C,D]M9

16الأول، تشرين 22 Lecture 4: Search Algorithms 13

Uniformed Search

16الأول، تشرين 22 Lecture 4: Search Algorithms 14

Advantages:

� If more than one solution exists (or) number of levels is high

then DFS is best because exploration is done in a small portion

of the whole space.

Disadvantages:

� Not guaranteed to find a solution

16الأول، تشرين 22 Lecture 5: Search Algorithms 1

Informed Search (Heuristic Search)

2- Informed Search (Heuristic Search)

� A heuristic is a method that might not always find the best

solution but is guaranteed to find a good solution in reasonable

time. By sacrificing completeness it increases efficiency.

Heuristic search is useful in solving problems which:-

�Could not be solved any other way.

�Solution takes an infinite time or very long time to compute.

16الأول، تشرين 22 Lecture 5: Search Algorithms 2

Informed Search (Heuristic Search)

� Heuristic search methods generate and test algorithms, from

these methods are:-

1- Hill Climbing.

2- Best-First Search.

3- A and A* algorithm.

16الأول، تشرين 22 Lecture 5: Search Algorithms 3

Informed Search (Heuristic Search)

1- Hill Climbing.

� The idea here is that, you don’t keep the big list of states

around you just keep track of the one state you are considering,

and the path that got you there from the initial state. At every

state you choose the state leads you closer to the goal

(according to the heuristic estimate), and continue from there.

16الأول، تشرين 22 Lecture 5: Search Algorithms 4

Informed Search (Heuristic Search)

� The name “Hill Climbing” comes from the idea that you are

trying to find the top of a hill, and you go in the direction that

is up from wherever you are. This technique often works, but

since it only uses local information.

16الأول، تشرين 22 Lecture 5: Search Algorithms 5

Informed Search (Heuristic Search)

� Hill Climbing Algorithm

Begin

Cs=start state; Open=[start]; Stop=false;

Path=[start];

While (not stop) do

{

if (cs=goal) then

return (path);

generate all children of cs and put it into open

16الأول، تشرين 22 Lecture 5: Search Algorithms 6

Informed Search (Heuristic Search)

if (open=[]) then

stop=true

else

{

x:= cs;

for each state in open do

{

compute the heuristic value of y (h(y));

if y is better than x then

x=y

16الأول، تشرين 22 Lecture 5: Search Algorithms 7

}

if x is better than cs then

cs=x

else

stop =true;

}

}

return failure;

}

Informed Search (Heuristic Search)

Example:

� A trace of hill climbing searches for R4 of Figure below:

16الأول، تشرين 22 Lecture 5: Search Algorithms 8

Informed Search (Heuristic Search)

16الأول، تشرين 22 Lecture 5: Search Algorithms 9

Informed Search (Heuristic Search)

Hill climbing Problems:-

Hill climbing may fail due to one or more of the following reasons:-

1- a local maxima: Is a state that is better than all of its neighbors but is

not better than some other states.

16الأول، تشرين 22 Lecture 5: Search Algorithms 10

Informed Search (Heuristic Search)

2- A Plateau: Is a flat area of the search space in which a number of

states have the same best value, on plateau it’s not possible to

determine the best direction in which to move.

16الأول، تشرين 22 Lecture 5: Search Algorithms 11

Informed Search (Heuristic Search)

3- A ridge: Is an area of the search space that is higher than surrounding

areas, but that cannot be traversed by a single move in any one

direction.

16الأول، تشرين 22 Lecture 5: Search Algorithms 12

Informed Search (Heuristic Search)

2- Best-First-Search

� Best First search is away of combining the advantages of both

depth‐first and breadth‐first search into a single method. The actual

operation of the algorithm is very simple. It proceeds in steps,

expanding one node at each step, until it generates a node that

corresponds to a goal state. At each step, it picks the most promising

of the nodes that have so far been generated but not expanded.

16الأول، تشرين 22 Lecture 5: Search Algorithms 13

Informed Search (Heuristic Search)

� It generates the successors of the chosen node, applies the heuristic

function to them, and adds them to the list of open nodes, after

checking to see if any of them have been generated before. By doing

this check, we can guarantee that each node only appears once in the

graph, although many nodes may point to it as a successors. Then the

next step begins.

� In Best-First search, the search space is evaluated according to a

heuristic function. Nodes yet to be evaluated are kept on an OPEN list

and those that have already been evaluated are stored on a CLOSED

list.

16الأول، تشرين 22 Lecture 5: Search Algorithms 14

Informed Search (Heuristic Search)

� The OPEN list is represented as a priority queue, such that unvisited

nodes can be queued in order of their evaluation function. The

evaluation function f(n) is made from only the heuristic function (h(n))

as: f (n) = h(n) .

Best-First-Search Algorithm

{

Open:=[start];

Closed:=[];

While open ≠ [] do

{

Remove the leftmost from open, call it x;

16الأول، تشرين 22 Lecture 5: Search Algorithms 15

Informed Search (Heuristic Search)

If x= goal then

Return the path from start to x

Else

{

Generate children of x;

For each child of x do

Do case

The child is not already on open or closed;

{

assign a heuristic value to the child state ;

Add the child state to open;

}

16الأول، تشرين 22 Lecture 5: Search Algorithms 16

Informed Search (Heuristic Search)
The child is already on open:

If the child was reached along a shorter path than the state currently on open then give the

state on open this shorter path value.

The child is already on closed:

If the child was reached along a shorter path than the state currently on open then

{

Give the state on closed this shorter path value

Move this state from closed to open

}

}

Put x on closed;

Re-order state on open according to heuristic (best value first)

}

Return (failure);

}

16الأول، تشرين 22 Lecture 5: Search Algorithms 17

Informed Search (Heuristic Search)

Example:

16الأول، تشرين 22 Lecture 5: Search Algorithms 18

Informed Search (Heuristic Search)

ClosedOpenCurrent StateIteration

[][A5]A1

[A5][D3,B4,C5]D2

[A5,D3][C2, B4, I5]C3

[A5,D3,C2][F3,B4,I5]F4

[A5,D3,C2,F3][B4,I5]B5

[A5,D3,C2,F3,B4][C1,E3,I5]C6

[A5,D3,F3,B4,C1][E3, I5]E7

[A5,D3,F3,B4,C1,E3][G0,I5]G8

[A5,D3,F3,B4,C1,E3,G0][I5]

The goal is found and the Path is = A5,D3,F3,B4,C1,E3,G0

16الأول، تشرين 22 Lecture 5: Search Algorithms 19

A‐Star search algorithm

16الأول، تشرين 22 Lecture 5: Search Algorithms 20

3- A Star search algorithm

� A* algorithm is simply define as a best first search plus specific

function. This specific function represents the actual distance

(levels) between the current state and the goal state and is denoted

by f(n). It evaluates nodes by combining g(n), the cost to reach the

node, and h(n), the cost to get from the node to the goal:

f(n) = g(n) + h(n).

A‐Star search algorithm

16الأول، تشرين 22 Lecture 5: Search Algorithms 21

� Since g(n) gives the path cost from the start node to node n, and

h(n) is the estimated cost of the cheapest path from n to the goal,

we have f (n) = estimated cost of the cheapest solution through n.

� Thus, if we are trying to find the cheapest solution, a reasonable

thing to try first is the node with the lowest value of g(n) + h(n). It

turns out that this strategy is more than just reasonable: provided

that the heuristic function h(n) satisfies certain conditions, A*

search is both complete and optimal.

A‐Star search algorithm

16الأول، تشرين 22 Lecture 5: Search Algorithms 22

Example:

ClosedOpenCurrent StateIteration

[][A3]A1

[A3][B7,D8,C10]B2

[A3,B7][D8,E10,C10]D3

[A3,B7,D8][E10,C10,I15]E4

[A3,B7,D8,E10][G10,C10,I15]G5

[A3,B7,D8,E10,G10]The path is = 6

Behavior of Algorithms

16الأول، تشرين 22 Lecture 5: Search Algorithms 23

1. Completeness: An algorithm is said to be complete, if it

terminates with a solution, when one exists.

2. Admissibility: An algorithm is called admissible if it is

guaranteed to return an optimal solution, whenever a solution

exists.

3. Dominance: An algorithm A1 is said to dominate A2, if every

node expanded by A1 is also expanded by A2.

4. Optimality: an algorithm is said to be optimal over a class of

algorithms, if it dominates all members of the class.

Behavior of Algorithms

16الأول، تشرين 22 Lecture 5: Search Algorithms 24

� For example, breadth first search is an admissible search

strategy, because it look at every state at level n of the graph

before considering any state at level n+1. So, goal nodes are

found along the shortest possible path. Breadth first search is an

A* algorithm in which F[n]=g[n]+0. In other words, breadth-

first search uses a trivial estimate of the distance to the goal.

Measuring problem-solving performance

16الأول، تشرين 22 Lecture 5: Search Algorithms 25

� The output of a problem solving is either failure or a solution

when will evaluate an algorithm’s performance in four ways:

A.Completeness: The strategy guaranteed to find a solution

when there is one.

B.Optimality: If more than one way exists to derive the

solution then then the best one is selected.

C.Time complexity: Time taken to run a solution.

D.Space complexity: Memory needed to perform the search.

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 1

Problem Definition

� In order to solve the problem play a game, which is restricted to

two person table or board games, a topic which was fully

discussed in the last year's course, we require the rules of the game

and the targets for winning as well as a means of representing

positions in the game.

� The opening position can be defined as the initial state and a

winning position as a goal state, there can be more than one.

Legal moves allow for transfer from initial state to other states

leading to the goal state.

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 2

Problem Definition

� However the rules are far to copious in most games especially

chess where they exceed the number of particles in the universe.

� Thus the rules cannot in general be supplied accurately and

computer programs cannot easily handle them. The storage also

presents another problem but searching can be achieved by

hashing.

� The number of rules that are used must be minimized and the set

can be produced by expressing each rule in as general a form as

possible.

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 3

Problem Definition

� The representation of games in this way leads to a state space

representation and it is natural for well organized games with

some structure. This representation allows for the formal

definition of a problem which necessitates the movement from a

set of initial positions to one of a set of target positions.

� It means that the solution involves using known techniques and a

systematic search. This is quite a common method in AI.

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 4

Problem Definition

Well organized problems (e.g. games) can be described as a set

of rules.

� Rules can be generalized and represented as a state space

representation:

�Formal definition.

�Move from initial states to one of a set of target positions.

�Move is achieved via a systematic search.

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 5

Problem space and search

To build a system to solve a practical problem, need to do four thinks:

1. Define the problem precisely.

� This define must include specifications of what the initial state(S) we

well be as well as final state (F) conditions to acceptable solution to the

problem.

Analyze the problem.

2. Find the optimal techniques for solving the problem.

3. Isolate and represent the task knowledge that is necessary to solve the

problem.

4. Choose the best problem-solving techniques and apply it to practical

problem.

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 6

Problem space and search

� That means an problem in A.I must consist of features:

1. Two point (Initial and Goal State).

2. Final path between the start state and the goal state.

3. Problem state space.

4. To solve the problem in A.I means to search about the optimal solution

between START and GOAL state.

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 7

Define the problem and or as a space (Start Space)

� Define the problem as a start space search.

A-By using Problem Characteristics:

� Is the problem decomposable into a set of (nearly) independence smaller

or easier sub problem?

� Can solution steps be ignored or at last undone if they prove unwise?

� Is the problems universe predictable?

� Is a good solution to the obvious comparison to all other possible

solution?

� Is the described solution a state of the world or a path to a state?

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 8

Define the problem and or as a space (Start Space)

� Problem Characteristics: ALGORITHM

Step (1): Decomposition a problem into a set of smaller problem.

Step (2): Repeat the Step (1) into a set of problem or Step (3).

Step (3): Ignored at last undone if they prove unwise.

Step (4): Problem universe predictable.

Step (5): Find a good solution to the problem.

Step (6): Described the solution a state of the world or a path to a state.

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 9

Define the problem and or as a space (Start Space)

Problem (1): Decomposition the problem and find the problem state space?

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 10

Initial State:
ON(C,A); ON(B,__) or ON(B, Table)

Goal State:
ON(B,C) and ON(A,B)

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 11

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 12

B-By using Problem Solving:

� In this section we can use the knowledge base by using the set of

steps that must be use this to find the solve the problem, then we can

found a multi problems that indicates a sum of steps that use to find

the solve of these problem.

� Knowledge base. Find the INITIAL and GOAL (Final State). Of the

problem. Then the generat algorithm that uses to solve the problem

in A.I is the knowledge base.

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 13

Problem State Space Search: ALGORITHM

Step (1): Find all the PARAMETERS parameter in the problem.

Step (2): State all the VALUE of these parameters.

Step (3): State the problem

1- INITIAL state.

2- GOAL state

Step (4): Find the entire RULE to solve these problem.

Step (5): Find the TREE that represent these solution.

Step (6): Described the solution a state of the world or a path to a

state.

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 14

Problem (2): You have two empty Jugs a 4-litre one and a 3-litre one. You

are asked to provide a Jug with a specified a mount of water, the Jugs

have no "grading marks" and the only think you can do are fill to Jugs

form the top, empty the Jugs into the sink or pour the water form one Jug

to the another. Find the problem state space by using problem solving.

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 15

Solve:

� The capacities of each Jug are:

Jug is full on 4 liters.

Jug is full on 3 liters

Step (1): The parameters of the problem are: X and Y.

That mean:

X is the Jug 1.

Y is the Jug 2.

Step (2): The value of the parameters is:

X=0 for " Empty Jug ".

X=1,2,3 and 4 for " Full Jug ".

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 16

Y=0 for " Empty Jug ".

Y=1, 2 and for " Full Jug ".

Step (3): The Initial state for each parameters

Initial state: if empty Jug (0, 0) or Full Jug (4, 3)

Goal state: (2,y) or (x,2)

Step (4): The Rule of the problem.

1. (x,y)�(4, y) full x

2. (x,y)�(x, 3) full y

3. (x,y)� (0, y) empty x Jug

4. (x,y)� (x,0) empty y Jag

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 17

5. (x, y)�(x, y-(4-x)) pour water from y into x until x is full

6. (x, y)�(x-(3-y), y) pour water from x into y until y is full

7. (x, y)� (x+y, 0) pour all y Jug to x Jug

8. (x, y)� (0, y+x) pour all x Jug to y Jug

9. (0,2)� (2,0) pour 2 liters from y to x

10. (2,0)� (0,2) pour 2 liters from x to y

Step (5): the tree of the solution

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 18

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 19

Problem (3): solve the 8-puzzle problem

Solve:

Step (1): The parameters of the problem are: X1, X2, X3… X9.

Step (2): The value of the parameters is:

X1=0 or 1.

1 that means X=1 if X is translated or moving.

0 that means X=0 if X is not translates or not moving

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 20

Step (3): The Initial state and Goal state

Step (4): The Rule of the problem solve in the first translation is (X, Y, Z).

Rule : move blank left, right, up, down

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 21

Step (5): The TREE of the solution is:

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 22

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 23

TWO-PLAYER GAMES (Tic-Tac-Toe)

� Two-player games are games in which two players compete against each other.

These are also known as zero-sum games. The goal then in playing a two-

player game is choosing a move that maximizes the score of the player and/or

minimizes the score of the competing player.

� Consider the two-player game Tic-Tac-Toe. Players alternate moves, and as

each move is made, the possible moves are constrained (see the partial Tic-

Tac-Toe game tree in next Figure). In this simple game, a move can be

selected based on the move leading to a win by traversing all moves that are

constrained by this move.

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 24

� Also, by traversing the tree for a given move, we can choose the move that

leads to the win in the shallowest depth (minimal number of moves).

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 25

� Tic-Tac-Toe is an interesting case because the maximum number of moves is

tiny when compared to more complex games such as Checkers or Chess. Tic-

Tac-Toe is also open to numerous optimizations. Consider, for example, the

first X move in below figure . If the board is rotated, only three unique moves

are actually possible. Without optimization, there exist 362,880 nodes within

the complete game tree.

Define the problem and or as a space (Start Space)

16الأول، تشرين 22 Lecture 6:Problem Solving (Games) 26

